

Asymmetric Induction in the Wittig-Still Rearrangement of Ethers Containing an Allylic Stereocenter – Diastereocontrol by Allylic Nitrogen

Henning Priepke, Reinhard Briickner", Klaus Harms *I

Fachbereich Chemie der Philipps-Universitat, Hans-Meerwein-Straße, D-3550 Marburg

Received August 15, 1989

Key Words: Asymmetric induction *f* Alcohols, homoallylic, diastereoselective synthesis of *f* y-Amino alcohols, diastereoselective synthesis of *f* Hydrogen bonding / **[2,3]** Sigmatropic rearrangement *f* Wittig rearrangement

The stereochemistry of Wittig-Still rearrangements under the influence of an allylic stereogenic center attached to Bn_2N or RNBoc groups is studied. Rearrangements are subject to stereocontrol through asymmetric induction. Stannylated ally1 ethers **13** with Z double bonds give syn-configuration amino

In an allylic system the faces of the $C = C$ bond become diastereotopic if the allylic carbon represents a stereogenic center ("stereocenter"). Hence, reactions with this double bond can $-$ in principle $-$ exhibit facial selectivity. In fact, such facial selectivity abounds, as shown by an ever increasing number of examples'].

E- **¹**: *top or bottom face attack E-, 2-2* : *bottom* **face** *attack*

Z-1 : *top face attack*

For instance, nucleophiles ("Nu") add preferentially to *one* face of allylically oxygenated electron-deficient olefins. Top face selectivity was found in additions to enones/enoates 1 with *Z* configuration for $Nu = BnNH₂²$, BuCu $·BF₃³$, $Ph_3P = CMe_2^{4}$, $Ph_2S = CMe_2^{5}$, or cyclopentadiene⁶. Nucleophilic additions to E-configurated enones/enoates 1 exhibited top face selectivies for $Nu = MeO^{\Theta}$ ⁷, $BnNH₂$ ², (methallyl)₂CuLi⁸, Ph₂S = CMe₂⁵, and cyclopentadiene⁶. Bottom face selectivity was reported for reactions between **E-1** and Nu = BuCu \cdot BF₃³, Bu₂CuLi⁸, (vinyl)₂CuLi⁹, $Bu₂Cu(CN)Li₂¹⁰, Ph₃P=CMe₂^{4,11}, cyclopentadiene¹², or an$ o-quinone dimethide 13,141. That these *intermolecular* nucleophilic reactions are stereoselective inspired us to study the steric course of **[2,3]** Wittig rearrangements under the influence of a similar stereocenter, i.e. rearrangements of allylically oxygenated ether anions **2.** We were led by the idea that a $\lceil 2, 3 \rceil$ Wittig rearrangement $-$ simplified $-$ constitutes an *intramolecular* nucleophilic reaction, i.e. an $S_N 2^r$

alcohols **15** exclusively (ds > 95 : $< 5 - 99.8$: < 0.2). Stannanes of *E* configuration **14** lead to **15** less selectively $(syn:anti =$ **⁴⁶**: 54 - 92 : 8). X-ray structural data are provided for amino alcohol **syn-15b** and for the bis(carbamate) **17.**

type substitution, in a sense. This common feature of nucleophilic double bond attack was the basis of our hope that the Wittig rearrangement of **2** would experience as much stereocontrol as the cited additions to enones/enoates 1^{15} . In fact, asymmetric induction governs the stereochemistry of such Wittig rearrangements quite efficiently: The anion moiety of the lithiated ether 2 attacks the $C = C$ bond preferentially or exclusively from the bottom face **16).**

 $Bn =$ Benzyl

Stereoselective olefin reactions under the influence of an allylic stereocenter bearing a heteroatom *other* than oxygen have not been studied systematically. As to stereodirecting effects of allylic nitrogen, we are aware of only two reports: Tamm et al.¹⁷⁾ isolated (51%) exclusively a compound derived from a Diels-Alder reaction of carbamate **3** at its bottom face, and Reetz¹⁸ found > 96 : <4 diastereoselectivities for the conjugate additions of lower-order cuprates to amino acrylic esters 4^{19} . Scattered as these findings are, they demonstrate that allylic nitrogen *can* determine the facial selectivity of nucleophilic reactions at an adjacent double bond.

To whom inquiries concerning the X-ray structural analyses should be addressed.

Would a nitrogen atom $-$ when attached to the allylic stereocenter of an ether anion $5 -$ steer the faciality of a [2,3] Wittig rearrangement, too? **As** will be shown in this communication for Wittig-Still rearrangements²⁰, i.e. $[2,3]$ rearrangements of 5 with $R^2 = H$, it *does.*

Scheme 1

 $a)$ (COCl)₂, *DMSO*, *NEt*₃; *NaH*, (*EtO*)_s(*P=O*)CH_sCO_pMe, $THF - b)$ $Ph_3P = CHCO_2Me$, $MeOH - c)$ $(COCl)_2$, $DMSO$, NEt_s ; $Ph_3P=CHCO_sMe$, $MeOH-d$ *DIBAH*²²²²,- e) KH . *Bu\$n-CH,-I.*

Wittig-Still intermediates are usually²¹⁾ generated from stannanes by tin/lithium exchange. Hence, our first objective was to prepare the stannylated ethers **Z-13b-d** and *E-***14a** - **d** (Scheme **l).** These compounds resulted from the DIBAH reduction²²⁾ of γ -amino acrylic esters 9 to allylic alcohols $11/12$, followed by etherification with KH/Bu_3 - $SnCH₂I$ (method: ref.²⁰⁾). If possible, the ester precursors 9 were prepared as mixtures of *E* and *Z* isomers. Since these isomers were readily separable by flash chromatography²³, *one* batch of ester could be conveniently converted into *both* configurational series of stannanes **(2-13, E-14).** *E/Z* mixtures of esters **9b-d** were obtained by Wittig reactions of the precursor α -amino aldehydes with $Ph_3P = CH-CO_2Me$ *in methanol.* These conditions were first described by Tronchet and Gentile, who obtained a Z-configuration α , β -unsaturated ester $(Z : E = 92 : 8)$ from a tetrahydro-2-furancarbaldehyde; they have since proven a versatile tool for the synthesis of α , β -unsaturated esters with *Z* configuration from α -alkoxy aldehydes in general²⁴⁾. Even though in the case at hand - the condensation of $Ph_3P=CH-CO_2Me$ with α -amino aldehydes in methanol $-E$ isomers prevailed, the Tronchet-Gentile method concomitantly delivered 8,40, and **32** rel-% of the 2-configuration esters **9b,** *c,* and **d** (Scheme 1). The only ester prepared by Wittig-Horner olefination was **9a**. It was obtained with >95 : <5 *E* selectivity²⁵⁾. α -Amino aldehydes were the starting materials for all synthetic sequences of Scheme 1. They were used as

Scheme 2. Diastereoselective Wittig-Still rearrangements *[syn: anti* ratios determined by ¹H NMR spectroscopy (a, b) or ratios determined by ¹H NMR spectroscopy \vec{a} , **b**) or capillary GLC (c, d)]

a) Ram& material: me enantiomer depicted- b) **40%** *of* **1** *1* **b was** *recovered.- c) No HMPA* **was** *added.*

such $(8^{26}, 7^{27})$ or generated by in situ Swern oxidation²⁸⁾ of amino alcohols 6^{27} and 10^{29} .

Wittig-Still rearrangements²⁰⁾ of the stannylated ethers **13b-d** and **14a-d** were performed in THF by treatment with $1.2 - 2.3$ equivalents of *n*-BuLi. Usually, 4 equivalents of HMPA were added to the reaction mixture beforehand (Scheme 2). HMPA was added to improve the yield of rearrangement product, in analogy to our experience with Wittig-Still rearrangements of oxygenated ethers **2 160.** Indeed, when stannane **14d** was rearranged in the absence of HMPA, the yield dropped from 77% to 45% ³⁰⁾.

In general, the rearrangements were high-yielding, delivering 75-90% of homoallylic alcohols **15** (Scheme **2). A** lower yield resulted from the rearrangement of amino ether **Z-l3b,** where about as much fragmentation to ally1 alcohol **llb3"** (40%) as [2,3] shift to **15b** (45%) occurred. When mixtures of **syn** and *anti* isomers were produced, they were not separated.

The *synlanti* assignment of rearrangement product **15a** is based on the low-field shift of the olefinic $-CH = pro$ ton in *syn* $(\delta = 5.88)$ vs. *anti* epimer $(\delta = 5.52)$. Comparably spaced ¹H NMR shifts $- \delta_{syn} = 5.90, \delta_{anti} = 5.76$ and δ_{syn} = 5.84, δ_{anti} = 5.63 - are found in alcohols where the Bn_2N group is replaced by BnO and OH groups, respectively¹⁶⁰. Similar favored conformations - a prerequisite for the homology of δ_{syn} and δ_{anti} values – may be assumed. Intramolecular H-bonds in the BnO and OH containing reference compounds were inferred from their 'H NMR spectra'69, and H-bonding in **15a** is made very likely by the occurrence of a H-bond in the structurally related rearrangement product **15b** (vide infra).

Figure **1. SCHAKAL** plot **of** the solid-state structure of one **of** the enantiomers of amino alcohol 15b³²

The stereostructure of the rearrangement product *syn-***15b** was determined by X-ray diffractometry (Figure **1).** The existence of a hydrogen bond between the hydroxy (H donor) and dibenzylamino groups (H acceptor) emerges from the short $N \cdots H$ bond length (1.89 Å) as compared to a distance of ca. 2.80 A expected for intermolecular associa-

Chem. Ber. **123** (1990) *555* - **563**

tion³³⁾. Also, oxygen and nitrogen come as close to each other $(N \cdots O)$ = 2.84 Å) as a hydrogen bond permits $(2.6 - 2.9 \text{ Å}^{34})$.

Scheme 3

In the H-bonded 6-membered substructure **of** amino alcohol **syn-l5b,** the heavy atoms are located at positions corresponding to a chair conformation (Figure 1). Accordingly, the substituents at these atoms can be staggered *perfectly.* **As** expected, then, the dihedral angle *(''9")* between the allylic hydrogen (H21 in Figure **l)** and the hydrogen *a* to the $Bn₂N$ group (H51) measures 63° in the solid state. Presumably, the same angle φ - in formula syn-15b (Scheme 3) between a -H and b -H $-$ is preferred in solution. This follows from the relatively small J-value between *a-H* and b-H (4.1 **Hz)** in conjunction with a Karplus-type dependence of $J_{a,b}$ from φ . $J_{a,b} = 4.1$ Hz is also indicative of the shown stereochemistry of **syn-15b** because this value fits better with the $3.9 - 4.4$ Hz range of $J_{a,b}$ values reported for the syn vs. the $7.7-8.4$ Hz range found for the *anti* γ -amino alcohols 16^{35}

Figure **2. SCHAKAL** plot of the solid-state structure **of** carbamate **1732'**

The configuration of the rearranged pyrrolidine **15d** was established after derivatization of 15d $(syn:anti \approx 10:1)$ with Ph-NCO. The resulting carbamate **17** was recrystallized several times from hexane and subsequently X-rayed (Figure *2).* The identity of the X-rayed crystal with the syn epimer of carbamate **17** was secured by comparison with HPLC.

The configurations of oxazolidines syn/anti 15c obtained from stannanes **13c** and **14c** could not be deduced from their ¹H NMR spectra. Here, syn/anti assignments are based on the plausible assumption that asymmetric inductions in the Wittig-Still rearrangements of serine derivatives **13c (14c)** and proline derivatives **13d (14d)** are pairwise identical (cf. Scheme *2).*

Scheme *2* reveals for the first time that allylic stereocenters bearing NR_2 or N(Boc) groups exert stereocontrol through asymmetric induction in the Wittig-Still rearrangement. The seven model compounds examined lead to epimer **syn-15** as the preferred rearrangement product. The syn fraction comprised $46 - 92\%$ of the rearrangement product starting from E-configuration stannylated ethers **14.** Considerably higher syn selectivities were observed when stannanes **13** with Z double bonds served as starting materials *36).* In these reactions, the content of contaminating anti epimer remained below the limit of detection $\lceil \langle 5\% \rceil \rangle$ for **b** $({}^{1}H NMR)$; $\langle 0.2\% \rangle$ for **c** and **d** (capillary GLC)].

By using Wittig-Still rearrangements of Z-configuration stannanes **13,** we have converted enantiomerically pure amino acids into amino alcohols **syn-15** stereoselectively. Such amino alcohols look like promising precursors of optically active β-lactams 20.

Scheme 4

Scheme 4 shows that in Wittig-Still rearrangements allylic nitrogen is a comparably efficient inducer of chirality as allylic oxygen was in the reference compounds **18** and **19160.** Both nitrogen and oxygen induce the preferential formation of syn-configuration products, the syn preference being higher starting from *2* olefins (shown) than from E olefins (not shown).

Chirally oxygenated ethers like **18/19** are believed to rearrange via transition state **21.** Transition state **21** is marked by the possibility of overlap between the anionic lone pair, the $\pi_{C=C'}^*$ and the low-lying σ_{C-O}^* orbital aligned parallel. Such overlap would engender maximum charge delocalization, i. e. maximum stabilization (cf. ref. $16c - e$) for a detailed discussion). Analogously the favored transition state for the rearrangement of the *aminated* intermediates of the present communication should be **22.** Of course, nitrogen is less electronegative than oxygen, and one would therefore ascribe *less* charge delocalizing ability to the σ_{C-N}^* orbital of transition state 22 than to the σ_{C-O}^* orbital of transition state **21.** Hence, *less* stabilization should be provided to transition state **22,** and more "stereochemical failure" furnishing *anti* product should occur. However, the *comparably* high syn selectivities caused by allylic nitrogen vs. oxygen (Scheme 4) implies that transition state **22** (containing N) is as much stabilized as **21** (containing 0). We believe that transition state $22 -$ unlike $21 -$ is also favored sterically. Repulsive interactions between the allylic amino group (conformational *A* value of $NMe₂³⁷$: 2.1 kcal/mol) need to be avoided more strictly than interactions with allylic oxygen $(A \text{ value of } \text{OMe}^{37})$: 0.6 kcal/mol).

Clearly, the electronic status of the stereodirecting entity differs in rearrangement substrates **13b** and **14a-b** (amino nitrogen) from that in **13c -d** and **14c-d** (carbamate nitrogen). Our data do not allow to recognize differential effects of these substituents on the magnitude of asymmetric induction in the Wittig-Still rearrangement. We cannot, therefore, exclude the possibility that the preference for tran-sition state **22** is preponderantly - or may be even exclusition state 22 is preponderantly $-$ or may be even exclusively $-$ steric in nature.

We thank *Ulrike Brune* for skillful experimental assistance. Financial support by the *Deutsche Forschungsgemeinschaft* (grant Br 881/2-l), donations of DIBAH by *Schering AG,* and a generous gift of aldehyde **8** by *Dr. H.-E. Radunz (Merck AG)* are gratefully acknowledged.

Experimental

¹H NMR: Bruker AC 300, tetramethylsilane as internal standard in CDCl₃ unless indicated differently; Bruker WH 400, $C_6HD_4NO_2$ as internal standard for the high-temperature (100 $^{\circ}$ C) spectra in $C_6D_5NO_2$; integrals in accord with assignments; coupling constants in Hz; coupling constants $J_{H_1^{117}Sn}$ and $J_{H_1^{19}Sn}$ abbreviated as $J_{H,Sn}$. Capillary gas chromatography: Siemens Sichromat 3, glass capillary coated with Supelcowax-10 (30 m \times 0.32 mm). - All reactions were performed in oven-dried (100 $^{\circ}$ C) glassware under dry N₂. -Compounds were purified by flash chromatography²³⁾ on Merck silica gel 60 (particle size $0.040 - 0.063$ mm, $230 - 400$ mesh $ASTM. - Yields refer to analytically pure samples.$

Methyl (E) -4- (Dibenzylamino) -5-methyl-2-hexenoate **(E-9a)** : Oxalyl chloride $(0.869 \text{ g}, 6.85 \text{ mmol}, 1.2 \text{ equiv.})$ in CH₂Cl₂ (12 ml) was treated with DMSO (0.71 ml, 0.78 g, 10.0 mmol, 1.8 equiv.) for 7 min at -70° C. *N,N-Dibenzylvalinol*²⁷ (6) (1.59 g, 5.60 mmol) in $CH₂Cl₂$ (2.5 ml) was added, followed 1 h later by triethylamine $(1.20 \text{ g}, 11.8 \text{ mmol}, 2.1 \text{ equiv})$. After another 15 min at -70° C the mixture was warmed to room temp., washed with 1.5% HCI (20 ml) and satd. aqueous $Na₂CO₃$ (2 x 20 ml), and dried with MgSO₄. Removal of the solvent left the crude aldehyde which was dissolved in THF (5 ml) and added to a previously prepared solution (0° C \rightarrow room temp.; 2 h) of methyl (diethylphosphono)acetate (1.46 g, 6.94 mmol, 1.2 equiv.), NaH (0.25 g, 10.2 mmol, 1.8 equiv.), and THF (35 ml). After 2 h the mixture was diluted with H_2O (50 ml) and extracted with diethyl ether $(2 \times 50 \text{ ml})$. The combined organic layers were washed with 1% HCl $(2 \times 50 \text{ ml})$ and dried with MgS04. Flash chromatography [petroleum ether/ether (10: **I)]** yielded E-9a (1.13 g, 60%). $-$ ¹H NMR: $\delta = 0.72$ and 1.09 [2 d, $J_{\text{vic}} = 6.6$, (CH₃)₂CH], 1.95 (dsept, $J_{5,4} = 10.3$, $J_{\text{vic}} = 6.6$, 5-H), 2.62 (dd, $J_{4,5} = J_{4,3} = 10.3, 4$ -H), two superimposing AB signals $\delta_A =$ 3.28, δ_B = 3.92, $J_{A,B}$ = 13.8, N(CH₂Ph)₂], 3.80 (s, OMe), 5.75 (d, $7.20 - 7.40$ (m, 2 C_6H_5). J_{trans} = 15.6, 2-H), 6.89 (dd, J_{trans} = 15.7, $J_{3,4}$ = 10.4, 3-H),

$$
C_{22}H_{27}NO_2 \ (337.5)
$$
 Calcd. C 78.30 H 8.06 N 4.15
Found C 78.12 H 8.04 N 4.12

Methyl (E)- and (Z)-4-(Dibenzylamino)-5-phenyl-2-pentenoates **(E-9b, Z-9b): E-9b** (1.45 g, 85%) and **Z-9b** (0.132 g, 8%) were prepared from *N,N*-dibenzylphenylalaninal²⁷⁾ (7; 1.45 g, 4.41 mmol) according to the procedure given for the preparation of *E-9c* and **Z-9c** from **8.** $-$ **Z-9b:** ¹H NMR: δ = AB signal (δ _A = 2.82, δ _B = 2.94, $J_{A,B} = 13.9$, in addition split by $J_{A,4} = 6.1$, $J_{B,4} = 9.1$, 5-H₂), 3.41 [d, $J_{\text{gem}} = 13.9$, N(CH¹H²Ph)₂], 3.44 **(s, OMe)**, 3.90 [d, $J_{\text{gem}} =$ 13.9, N(CH¹H²Ph)₂], 4.72 (m_c, 4-H), 5.97 (dd, $J_{cis} = 11.8$, $J_{2,4} = 1.0$, 2-H), 6.40 (dd, $J_{cis} = 11.7$, $J_{3,4} = 10.1$, 3-H), 7.06 - 7.30 (m, 3 C₆H₅). $C_{26}H_{27}NO_2$ (385.5) Calcd. C 81.01 H 7.06 N 3.63 Found C 80.60 H 7.25 N 3.86

'H NMR and combustion analytical data of ester **E-9b** have been

described recently 38).

Methyl (Z) - *and* (E) -3- $[(4R)$ -3- $(tert-Butoxycarbonyl)$ -2.2-di*methyl-i,3-oxazolidin-4-yl]propenoates* **(Z-9c, E-9c):** At **0** "C [(meth**oxycarbonyl)methylene]triphenylphosphorane** (6.50 g, 19.4 mmol, 1.5 equiv.) and **(4S)-3-(tert-butoxycarbonyl)-2,2-dimethyl-l,3-oxa**zolidine-4-carbaldehyde **(8)** [2.96 g, 12.9 mmol; $[\alpha]_D^{21} = -81$ (c = 4.9, CH₂Cl₂); ref.²⁶: $[\alpha]_D = -91.7$ ($c = 1.34$, CHCl₃)] were allowed to react in dry methanol (40 ml) for 17 h. The mixture was diluted with H₂O (70 ml), extracted with diethyl ether (150 + 80 + 80 ml), and dried with $Na₂SO₄$. Flash chromatography [petroleum ether/ diethyl ether $(5:1)$ diethyl ether] gave Z-9c in the first fractions (1.33 g, 36%) and **E-9c** (2.02 g, 55%) in the last ones.

Z-9c: $[\alpha]_D^{21} = -37$ ($c = 4.5$, CH₂Cl₂). - ¹H NMR (C₆D₅NO₂): $\delta = 1.49$ [s, C(CH₃)₃], 1.59 and 1.68 [2 s, 2'-(CH₃)₂], 3.70 **(s, OCH**₃), 3.78 (dd, $J_{\text{gem}} = 9.1, J_{5'-H^1,4'} = 3.5, 5'-H^1$), 4.27 (dd, $J_{\text{gem}} = 8.9$, $J_{5'-H^2,4'} = 7.1, 5'-H^2$, 5.52 (m_c, 4'-H), 5.87 (d, $J_{cis} = 11.5, 2-H$), 6.34 (dd, $J_{cis} = 11.4$, $J_{3,4'} = 8.0$, 3-H).

> C14H23N05 (285.3) Calcd. C 58.93 **H** 8.12 N 4.91 Found C 59.13 **H** 8.26 N 4.87

E-9c: $[\alpha]_D^{21} = -65$ ($c = 4.2$, CH₂Cl₂). - ¹H NMR (C₆D₅NO₂): 3.83 (dd, $J_{\text{gem}} = 9.1, J_{5'-H^1,4'} = 2.5, 5'-H^1$), 4.15 (dd, $J_{\text{gem}} = 9.1$, $\delta = 1.50 \overline{\text{[s, C(CH_3)_3]}}$, 1.59 and 1.67 [2 s, 2'-(CH₃)₂], 3.71 (s, OCH₃), $J_{5\text{-}H2,4'} = 6.5, 5'\text{-}H^2$), 4.59 (m_c, 4'-H), 6.07 (d, $J_{trans} = 15.6, 2\text{-}H$), 6.99 $(dd, J_{trans} = 15.7, J_{3,4'} = 6.8, 3-H$.

> Cj4H23N05 (285.3) Calcd. C 58.93 H 8.12 **N** 4.91 Found C 59.00 H 8.15 N 4.78

Methyl (E)- and **(Z)-3-[** *(2s) -1* - *(tert-Butoxycarbonyl)pyrrolidin-2-y1)propenoates* **(E-9d, Z-9d):** Oxalyl chloride (0.63 ml, 0.91 g, 7.1 mmol, 1.1 equiv.) in THF (5 ml) was treated with DMSO (1.06 ml, 1.17 g, 15.0 mmol, 2.3 equiv.) for 7 min at -70° C. (2S)-*N*-(tertbutoxycarbony1)prolinol **(10;** 1.31 g, 6.52 mmol) in THF (5 ml) was added, followed 2 h later by triethylamine (2.73 ml, 1.98 g, 19.6 mmol, 3.0 equiv.). The mixture was kept at -70° C for 15 min, warmed to room temp., diluted with 30 ml MeOH, and transferred via cannula to **(methoxycarbony1)triphenylphosphorane** (3.27 g, 9.78 mmol, 1.5 equiv.) in MeOH (50 ml). After 40 min the mixture was poured into ether (200 ml) and washed with 1% HCl (100 ml) and 5% aqueous $Na₂CO₃$ (100 ml). The crude product - purified by flash chromatography [petroleum ether/ether $(7:1 \rightarrow 3:1)$] gave **Z-9d** (0.409 *g,* 25%) and **E-9d** (0.862 g, 52%).

 $\delta = 1.50$ [s, C(CH₃)₃], 1.65-1.97 (m, 3'-H₂, 4'-H¹), 2.28 (m_c, 4'-H²), AB signal ($\delta_{A} = 3.45$, $\delta_{B} = 3.55$, $J_{A,B} = 10.7$, in addition split by $J_{A,4'} = 6.9, J_{B,4'} \approx 7.0, 5'-H_2$), 3.70 **(s, OMe)**, 5.41 **(m_c, 2'-H)**, 5.77 3-H). $C_{13}H_{21}NO_4$ (255.3) Calcd. C 61.16 H 8.29 N 5.49 Found C 61.07 H 8.42 N 5.62 **Z-9d:** $[\alpha]_D^{20} = +71$ ($c = 1.1$, CH₂Cl₂). - ¹H NMR (C₆D₅NO₂): (dd, $J_{cis} = 11.5$, $J_{2,2'} = 1.4$, 2-H), 6.23 (dd, $J_{cis} = 11.5$, $J_{3,2'} = 8.2$,

E-9d: $[\alpha]_D^{20} = +78$ ($c = 1.5$, CH₂Cl₂). - ¹H NMR (C₆D₅NO₂): δ = 1.51 [s, C(CH₃)₃], 1.72 – 1.87 (m, 3'-H₂, 4'-H¹), 2.08 (dq, J_{gem} = 11.9, $J_{\text{vic}} = 8.1, 4' - H^2$), AB signal $(\delta_A = 3.42, \delta_B = 3.47, J_{A,B}$ 10.8, in addition split by $J_{A,a} = 7.3$, $J_{A,b} = 5.2$, $J_{B,4'} = 7.5$, 5'-H₂), 3.71 **(s, OMe), 4.49 (m_c, 2'-H), 5.95 (dd,** $J_{trans} = 15.6$ **,** $J_{2,2'} = 1.3$, in CDCl₃, 400 MHz): Major conformer (ca. 55% of the mixture): $\delta = 1.42$ [s, C(CH₃)₃], 3.78 (s, OMe), 4.44 (m_c, 2'-H), 5.84 (d, J_{trans} = 15.8, 2-H), 6.87 (dd, $J_{trans} = 15.4$, $J_{3.2'} = 5.5$, 3-H); minor conformer: $\delta = 1.47$ [s, C(CH₃)₃], 3.75 (s, OMe), 4.54 (m_c, 2'-H), 5.88 (d, J_{trans} 16.9, 2-H), 6.93 (dd, $J_{trans} = 15.5, J_{3,2'} = 5.2, 3$ -H); superimposing multiplets of both conformers: $1.80 - 2.13$ (3'-H₂, 4'-H₂), 3.34 - 3.52 2-H), 6.94 (dd, $J_{trans} = 15.6$, $J_{3,2'} = 6.0$, 3-H). $-$ ¹H NMR (-60^oC)

 $(5' - H_2)$ ^C₁₃H₂₁NO₄ (255.3) Calcd. C 61.16 H 8.29 N 5.49 Found C 60.87 H 8.44 N 5.64

 $(2S)$ -N-(tert-Butoxycarbonyl)prolinol²⁹ (10): At 0°C 2.15 g (10.0) mmol) **N-(tert-butoxycarbony1)proline** and borane dimethyl sulfide adduct (2 ml, ca. 20 mmol) in THF (10 ml) were allowed to react for 20 h. The mixture was treated with methanolic 10% HOAc (20 ml) and the solvent was removed under reduced pressure. The crude product was dissolved in AcOEt (50 ml). Successive washings with 1 μ HCl (50 ml), H₂O (100 ml) and satd. aqueous NH₄HCO₃ $(2 \times 50 \text{ ml})$ and removal of the solvent yielded 10 $(1.48 \text{ g}, 73\%)$. $[\alpha]_D^{20} = +48$ (c = 1.1, CH₂Cl₂). - M.p. 57-59 °C. - ¹H NMR: $\delta = 1.47$ [s, C(CH₃)₃], 1.54 - 2.07 (m, 3-H₂, 4-H₂), 3.25 - 3.70 (m, 4H), 3.96 (m_c, 1H), 4.79 (m_c, 1H).

 $C_{10}H_{19}NO_3$ (201.3) Calcd. C 59.68 H 9.52 N 6.96 Found C 59.41 H 9.43 N 6.68

(Z)-4-(Dibenzylamino)-5-phenyl-2-penten-i-ol **(llb)** was prepared from **Z-9b** by the procedure described for Z -9c \rightarrow 11c. The procedure was carried on towards the stannylated ether **13b** without purification. $- A$ spectroscopically pure sample of $11b$ (0.014 **g,** 40%) **was** isolated upon attempted Wittig-Still rearrangement of 13b (0.067 g, 0.10 mmol). $-$ ¹H NMR: $\delta = 2.68$ (dd, 5-H²), AB signal ($\delta_A = 3.44$, $\delta_B = 3.61$, $J_{A,B} \approx 13$, in addition split by $J_{A,2} = 7.3$, $J_{B,2} = 6.4$, 1-H₂), two superimposing AB signals $[\delta_A = 3.58, \delta_B = 3.82, J_{A,B} = 13.7, N(CH_2Ph)_2]$, 3.68, partly superimposed (ddd, $J_{4,3} = J_{4,5 \text{ H}^1} \approx 9$, $J_{4,5 \text{ H}^2} \approx 5$, 4-H), AB signal $(\delta_A =$ 5.63, $\delta_B = 5.78$, $J_{A,B} = 11.1$, in addition split by $J_{A,4} = 9.4$, $J_{B,1} \approx 7$, A: 3-H, B: 2-H), 7.01 - 7.27 (m, 3 C₆H₃); OH not observed. $J_{\text{gem}} = 13.0, J_{5\text{-}H^{\text{1}}A} = 9.8, 5\text{-}H^{\text{1}}), 3.14 \text{ (dd, } J_{\text{gem}} = 12.9, J_{5\text{-}H^{\text{2}}A} = 4.9,$

(Z) *-3-[(4R) -3-* (tert- *Butoxycarbonyl)-2,2-dimethyl- 1,3-oxazolidin-4-yl]-2-propen-1-ol* (11c): At -70° C, F₃B $-$ OEt₂ (0.50 ml, 0.58 g, 4.1 mmol, 1.2 equiv.) and DIBAH (1.0 mol/l in hexane; 8.9 ml, 8.9 mmol, 2.6 equiv.) were added successively to **Z-9c** $(0.971 \text{ g}, 3.40 \text{ mmol})$ in CH_2Cl_2 (10 ml). After 6 h, 50% HOAc (8 ml) and 10% tartaric acid (67 ml) were added. Extraction with CH_2Cl_2 (3 **x** 80 ml), washing of the combined organic phases with satd. aqueous $Na₂CO₃$ (80 ml) and brine (80 ml) and flash chromatography [petroleum ether/diethyl ether $(4:1) \rightarrow (1:3)$] led to 0.631 g $(C_6D_5NO_2)$: $\delta = 1.50$ [s, C(CH₃)₃], 1.56 and 1.64 [2 s, 2'-(CH₃)₂], 3.70 (d, $J_{\text{gem}} = 8.9, 5'$ -H¹), 4.09, 4.17, 4.50, and 4.93 (4 m_c, 1-H₂, $J_{2,1} = 6.5, 2-H$); OH signal not observed. (72%) **11c.** - $[\alpha]_D^{20} = +40$ (c = 3.5, CH₂Cl₂). - ¹H NMR 4'-H, 5'-H²), 5.57 (dd, $J_{cis} = J_{3,4'} = 10.4$, 3-H), 5.83 (dt, $J_{cis} = 10.8$,

$$
C_{13}H_{23}NO_4 \ (257.3)
$$
 Calcd. C 60.68 H 9.01 N 5.44
Found C 60.57 H 9.01 N 5.36

(Z)-3-[(2S)-l-(ter~-Butoxycarhonyl)pyrrolidin-2-yl]-2-propen-1-01 **(lld)** (0.258 **g,** 76%) was obtained from **Z-9d** (0.382 g, 1.50 mmol) by the procedure described for the preparation of **llc** from [s, C(CH₃)₃], 1.62 – 2.11 (m, 3'-H₂, 4'-H₂), 3.37 (m_c, 5'-H₂), 3.85 (m_c, OH), $4.30 - 4.60$ (m, $1-H_2$), 4.78 (m_c, $2'$ -H), 5.37 (dd, $J_{cis} = J_{3,2'} =$ 10.3, 3-H), 5.82 (m, 2-H). **2-9c.** $- [\alpha]_D^{20} = +36$ (c = 0.9, CH₂Cl₂). $-$ ¹H NMR: $\delta = 1.44$

No correct C,H,N analysis could be obtained.

(E)-4-(Dibenzylamino)-5-methyl-2-hexen-l-ol **(12a): E-9a** (1.1 6 g, 3.44 mmol) in THF (15 ml) was treated with DIBAH (1.0 mol/l in hexane; 11.3 ml, 11.3 mmol, 3.3 equiv.) for 1 h at -70° C and 1 h at 0 °C. The reaction was quenched at -70 °C with 5 ml of MeOH. The resulting mixture was poured into aqueous K,Na tartrate (ca. 1 mol/l; 20 ml) and extracted with ether $(4 \times 20$ ml). Purification by flash chromatography [petroleum ether/ether $(2:1)$] yielded 1.11 g **12a** (95%). $-$ ¹H NMR: δ = 0.74 and 1.07 [2 d, J_{vic} = 6.6, $(CH_3)_2$ CH], 1.33 (t, $J_{OH,1} = 5.9$, OH), 1.87 (dsept, $J_{5,4} = 10.0$, $J_{\text{vic}} =$ 6.6, 5-H), 2.51 (m_c, 4-H), two superimposing AB signals $[\delta_A = 3.28,$ 3.8, 1-H₂), 5.58 - 5.61 (m, 2-H, 3-H), 7.18 - 7.41 (m, 2 C₆H₅). δ_B = 3.85, *J*_{A,B} = 13.8, N(CH₂Ph)₂], 4.25 (dd, *J*_{1,OH} = 5.9, *J*_{1,2} =

> $C_{21}H_{27}NO$ (309.5) Calcd. C 81.51 H 8.79 N 4.53 Found C 81.42 H 8.84 N 4.50

(E) -4- (Dibenzylamino)-5-phenyl-2-penten-l -01 **(12b)** (1 -96 g, 100%) was obtained from **E-9b** (2.102 g, 5.45 mmol) by the procedure described for the preparation of $12a$ from $E-9a$. $-{}^{1}H NMR$: $J_{A,B} = 13.7$, in addition split by $J_{5A,4} = 7.5$, $J_{5B,4} = 7.6$, 5-H₂), 3.42 $(m_c, 4-H)$, superimposing two superimposing AB signals $[\delta_A = 3.46,$ δ_B = 3.81, $J_{A,B}$ = 13.9, N(CH₂Ph)₂], 4.16 [br. dd, $J_{1,OH}$ = $J_{1,2}$ = 5.2, 1-H₂], AB signal $(\delta_A = 5.65, \delta_B = 5.76, J_{A,B} = 15.5, \text{ in addition})$ split by $J_{A,1} = 5.1$, $J_{B,4} = 7.8$, A: 2-H, B: 3-H), 7.01-7.27 (m, 3 C_6H_5). $\delta = 1.25$ (t, $J_{\text{OH},1} = 5.9$, OH), AB signal $(\delta_A = 2.77, \delta_B = 3.03,$

> $C_{25}H_{27}NO$ (357.5) Calcd. C 83.99 H 7.61 N 3.92 Found C 84.19 H 7.63 N 3.96

(E) -3-1 (4R) **-3-** *(tert-Butoxycarbonyl)-2,2-dimethyl-l ,3-oxazolidin-4-yi]-Z-propen-1-01* **(12c)** (0.501 g, 30%) was obtained from *E-*9c (1.85 g, 6.49 mmol) by the procedure described for the preparation of 11c from Z-9c. $[\alpha]_D^{20} = -13$ (c = 3.9, CH₂Cl₂). $-$ ¹H NMR ($C_6D_5NO_2$): $\delta = 1.52$ [s, $C(CH_3)_3$], 1.58 and 1.67 [2 s, 2'-(CH₃)₂], 2.04 (s, OH), 3.77 (br. d, $J_{\text{gem}} = 8.9, 5'$ -H¹), 4.07 (br. dd, $J_{\text{gem}} \approx J_{5'-H^2,4'} \approx 7.5, 5'-H^2$), 4.24 (m_c, 1-H₂), 4.46 (m_c, 4'-H), AB $signal (\delta_A = 5.87, \delta_B = 5.95, J_{A,B} = 15.5, in addition split by J_{A,4'} =$ 7.1, $J_{B,1} \approx 5$, A: 3-H, B: 2-H).

> $C_{13}H_{23}NO_4$ (257.3) Calcd. C 60.68 H 9.01 N 5.44 Found C 60.21 H 9.02 N 5.38

(E)-3-[(ZS)-l *-(tert-Butoxycarbonyl)pyrrolidin-2-yl]-2-propen-1-01* **(12d)** (0.428 g, 65%) was prepared from **E-9d** (0.743 g, 2.91 mmol) as described for the conversion of **Z-9c** into **l1c.** $- \lceil \alpha \rceil_0^{20} =$ $+35$ (c = 2.2, CH₂Cl₂). - ¹H NMR: δ = 1.44 and 1.46 [2 s, $C(CH₃)₃$ of two conformers], 1.50 - 2.09 (m, 3'-H₂, 4'-H₂), 3.28 - 3.44 $(m, 5'-H_2)$, 4.13 - 4.37 $(m, 2'-H, 1-H_2)$, 5.50 - 5.73 $(m, 2-H, 3-H)$; OH signal not observed.

$$
C_{12}H_{21}NO_3 \ (227.3)
$$
 Calcd. C 63.41 H 9.31 N 6.16
Found C 63.22 H 9.43 N 6.11

Stannylated Ethers **13** *and* **14: 13d** (0.155 g, 32%), **14a** (1.21 g, 76%), **14b** (1.34 g, 81%), **14c** (0.493 g, 54%), and **14d** (0.665 g, 71%) were prepared from the corresponding allylic alcohols **lld** (0.210 g, 0.92 mmol), **12a** (0.831 g, 2.68 mmol), **12b** (0.856 g, 2.39 mmol), **12c** (0.420 g, 1.63 mmol), and **12d** (0.401 g, 1.77 mmol) according to the procedure described for the preparation of **13c** from **Ilc.** Stannane **13b** (0.080 g) was obtained similarly from allylic alcohol **llb** pre pared by DIBAH reduction of **Z-9b** (0.097 g, 0.25 mmol); yield: 48% for the two stcps.

(2)-4- (Dibenzylamino)-5-phenyl-l-((tributylstanny1)methoxy J- 2 -pentene (13b): ¹H NMR: $\delta = 0.84$ (m_c, 3 × SnCH₂-CH₂), superimposed by 0.88 (t, $J = 7.3$, $3 \times \text{CH}_2\text{-}CH_3$), 1.29 (qt, both *J* values 7.3, 3 × CH₂-CH₂-CH₃), 1.46 (m_c, 3 × CH₂-CH₂-CH₂), AB signal $(\delta_A = 2.70, \delta_B = 3.05, J_{A,B} = 13.4, \text{ in addition split by } J_{A,4} = 7.9,$ $J_{B,4} = 6.8$, 5-H₂), AB signal $(\delta_A = 3.20, \delta_B = 3.55, J_{A,B} = 12.8, \text{ in }$ addition split by $J_{A,2} = 4.8$, $J_{B,2} \approx 6.6$, 1-H₂), AB signal $(\delta_A = 3.37)$, δ_B = 3.40, *J*_{A,B} = 10.3, each signal branch superimposed by d caused by ${}^2J_{H,Sn} \approx 15$, OCH₂Sn), two superimposing AB signals $signal (\delta_A = 5.63, \delta_B = 5.70, J_{A,B} = 11.0, \text{in addition split by } J_{A,4} =$ 9.4, $J_{B,1} = 5.9$, A: 3-H, B: 2-H), 7.00 - 7.28 (m, 3 C₆H₅). $[\delta_A = 3.43, \delta_B = 3.85, J_{AB} = 13.9, N(CH_2Ph)_2]$, 3.62 (m_c, 4-H), AB

 $C_{38}H_{55}NOSn$ (660.6) Calcd. C 69.10 H 8.39 N 2.12 Found C 69.02 H 8.43 N 2.20

(2) - I-[*(4R) -3- (tert-Butoxycarbonyl) -2.2-dimethyl-1 3-oxazolidin-4-ylJ-3-[(tributylstannyl)methoxy]-l-propene* **(13c):** KH (0.292 g, 7.27 mmol, 3.7 equiv.), tributyl(iodomethy1)stannane (1.27 g, 2.95 mmol, 1.5 equiv.), and **llc** (0.505 g, 1.96 mmol) were stirred in THF (20 ml) overnight. Quenching with satd. aqueous NH4Cl (10 ml), extraction with H_2O (20 ml) and diethyl ether $(4 \times 30 \text{ ml})$, and flash chromatography [petroleum ether/diethyl ether $(10:1) \rightarrow (7:1)$] gave 0.845 g (77%) of 13c. - $[\alpha]_D^{19} = +58$ (c = CH₂-CH₃), 1.00 (t, $J = 7.9$, $3 \times$ SnCH₂-CH₂), 1.37 (tq, both J_{vic} values = 7.2, 3 \times CH₂-CH₂-CH₃), 1.54 [s, C(CH₃)₃], 1.49 - 1.74 (m, $3 \times CH_2\text{-}CH_2\text{-}CH_2$), superimposing 1.61 and 1.68 [2 s, 2'-(CH₃)₂], 3.73 (dd, $J_{\text{gem}} = 8.7, J_{5.414'} = 3.2, 5'.H^1$), 3.87 (s with superimposing d caused by $J_{H,Sn} = 14.6$, OCH₂Sn), $4.12-4.18$ (m, $3-H_2$, $5'-H^2$), 4.80 (m_c, 4'-H), AB signal ($\delta_A = 5.60$, $\delta_B = 5.67$, $J_{A,B} = 11.2$, in addition split by $J_{A,4'} \approx 10$, $J_{B,3} = 5.7$, A: 1-H, B: 2-H). 3.3, CH₂Cl₂). - ¹H NMR (C₆D₅NO₂): δ = 0.93 (t, *J* = 7.2, 3 \times

 $C_{26}H_{51}NO_4Sn$ (560.4) Calcd. C 55.73 H 9.17 N 2.50 Found C 56.00 H 9.07 N 2.31

(Z)-l-[(2s) -1- (tert-Butoxycarbonyl)pyrrolidin-2-yl]-3-[(tributylstannyl)methoxy]-1-propene (13d): $[\alpha]_D^{20} = +50$ (c = 1.7, CH₃), 1.02 (t, $J \approx 8$, $3 \times$ SnCH₂-CH₂), 1.38 (qt, both *J* values 7.3, $3 \times CH_2-CH_2-CH_3$), 1.54 [s, C(CH₃)₃], 1.62 (m_c, 3 $\times CH_2-CH_2-$ CH₂), superimposed by 1.62-1.71 (m, 4'-H¹), 1.84 (m_c, 3'-H₂), 2.12 $(m_c, 4'-H^2)$, AB signal $(\delta_A = 3.44, \delta_B = 3.52, J_{A,B} = 10.6$, in addition split by $J_{A,a} = 7.4$, $J_{A,b} = 5.5$, $J_{B,4'} = 7.2$, 5'-H₂), 3.90 (s, with superimposing d caused by ² $J_{H,Sn}$ = 14.9, OCH₂Sn), 4.19 (dd, $J_{3,2}$ = CH₂Cl₂). - ¹H NMR (C₆D₅NO₂): $\delta = 0.94$ (t, $J = 7.3$, $3 \times$ CH₂-5.9, $J_{3,1} = 1.1$, 3-H₂), 4.66 (dt, $J_{2,1} = 8.0$, $J_{2,3'} = 4.8$, 2'-H), 5.52 (dd, $J_{cis} = 11.2, J_{1,2'} = 8.5, 1-H$, 5.61 (dt, $J_{cis} = 11.4, J_{2,3} = 5.8, 2-H$). $C_{25}H_{49}NO_3Sn$ (530.4) Calcd. C 56.62 H 9.31 N 2.64 Found C 56.98 H 9.46 N 2.89

(E)-4- (Dibenzylamino) -5-methyl-l-((tributylstannyl)methoxy]- 2-hexene (14a): ¹H NMR: $\delta = 0.74$ and 1.07 [2 d, $J_{\text{vic}} = 6.6$ and 6.5, (CH₃)₂CH], 0.89 (t, $J = 7.2$, 3 \times CH₂-CH₃), superimposing 0.93 $(m_c, 3 \times SnCH_2-CH_2)$, 1.32 (qt, both *J* values 7.2, 3 $\times CH_2-CH_2-$ CH₃), 1.53 (m_c, 3 × CH₂-CH₂-CH₂), 1.85 (dsept, $J_{5,4} = 10.1$, $J_{\text{vic}} =$ 6.7, 5-H), 2.49 (dd, $J_{4,3} = J_{4,5} = 9.7$, 4-H), two superimposing AB signals $[\delta_A = 3.27, \delta_B = 3.84, J_{A,B} = 13.7, N(CH_2Ph)_2]$, **AB** signal $(\delta_A = 3.76, \delta_B = 3.79, J_{A,B} = 10.4$, each signal branch superimposed by d caused by ${}^{2}J_{H,Sn} = 14.5$, OCH₂Sn), 3.95 (br. d, $J_{1,2} =$ 4.8, 1-H₂), AB signal $(\delta_A = 5.45, \delta_B = 5.54, J_{A,B} = 15.5, \text{ in addition})$ split by $J_{A,1} = 5.2$, $J_{B,4} = 9.3$, A: 2-H, B: 3-H), 7.18-7.40 (m, 2

C_6H_5).
 $C_{34}H_{55}NOSn$ (612.5) Calcd. C 66.67 H 9.05 N 2.29 Found C 66.40 H 9.02 N 2.25

(E) -4- (Dibenzy1amino)-5-phenyl- ¹-[*(tributylstannyl)methoxy]-* 2-pentene (14b): ¹H NMR: $\delta = 0.90$ (t, $J = 7.3$, $3 \times \text{CH}_2\text{-}CH_3$), superimposed by 0.92 (m_c, $3 \times$ SnCH₂-CH₂), 1.31 (qt, both *J* values 7.2, 3 × CH₂-CH₂-CH₃), 1.52 (m_c, 3 × CH₂-CH₂-CH₂), AB signal $(\delta_A = 2.78, \delta_B = 3.01, J_{A,B} = 13.8, \text{ in addition split by } J_{A,4} = 7.2,$ $J_{B,4}$ = 7.8, 5-H₂), 3.40 (m_c, 4-H), superimposed by part of the following pair of superimposing AB signals $[\delta_A = 3.43, \delta_B = 3.82,$ $J_{A,B}$ = 13.8, N(CH₂Ph)₂], AB signal (δ_A = 3.67, δ_B = 3.71, $J_{A,B}$ = 10.3, each signal branch superimposed by d caused by ${}^2J_{H,Sn} = 14.2$, OCH₂Sn), 3.89 (br. d, $J_{1,2} = 5.5$, 1-H₂], AB signal $(\delta_A = 5.51, \delta_B =$ 5.73, $J_{A,B} = 15.5$, in addition split by $J_{A,1} = 5.6$, $J_{B,4} = 8.3$, A: 2-H, B: 3-H), $7.01 - 7.26$ (m, 3 C_6H_5).

$C_{38}H_{55}NOSn$ (660.6) Calcd. C 69.10 H 8.39 N 2.12 Found C 68.99 H 8.37 N 2.29

(E)-1-[(4R)-3- (tert-Butoxycarbonyl)-2,2-dimethyl-l,3-oxazoli $din-4-yl/3-f(tributylstannyl/methoxyl-1-propene (14c): $\lceil \alpha \rceil_D^{19}$$ 7.2, 3 \times CH₂-CH₃), 0.99 (t, $J = 7.8$, 3 \times SnCH₂-CH₂), 1.36 (tq, both J_{vic} values = 7.1, 3 × CH₂-CH₂-CH₃), 1.54-1.67 (m, 3 × $CH_2\text{-}CH_2\text{-}CH_2$), superimposing in part 1.54 [s, $C(CH_3)_3$], also superimposing in part 1.59 and 1.70 [2 s, 2'-(CH₃)₂], 3.77 (br. d, J_{gem} = 8.6, 5'-H¹), 3.87 (m_c, OCH₂Sn), 3.98 (m_c, 3-H₂), 4.08 (dd, $J_{\text{gem}} \approx$ $J_{5'-H^2,4'} \approx 7.5, 5'-H^2$), 4.45 (m_c, 4'-H), 5.85 (m_c, 1-H, 2-H). -14 (c = 4.7, CH₂Cl₂). - ¹H NMR (C₆D₅NO₂): δ = 0.92 (t, *J* =

 $C_{26}H_{51}NO_4Sn$ (560.4) Calcd. C 55.73 H 9.17 N 2.50 Found C 55.46 H 9.22 N 2.31

f E)-1-[(25)-1- (tert-Butoxycarbonyl)pyrrolidin-2-yl/-3-[(tributylstannyl)methoxy]-1-propene (14d): $[\alpha]_D^{20} = +24$ (c = 2.9, CH_2Cl_2). - ¹H NMR (C₆D₅NO₂): $\delta = 0.94$ (t, $J = 7.3$, $3 \times CH_2$ -CH₃), 1.02 (m_c, 3 \times SnCH₂-CH₂), 1.38 (qt, both *J* values 7.3, 3 \times CH₂-CH₂-CH₃), 1.55 [s, C(CH₃)₃], 1.63 (m_c, 3 × CH₂-CH₂-CH₂), superimposed by $1.68-2.05$ (m, $3'-H_2$, $4'-H_2$), 3.43 (m_c, $5'-H_2$), 3.88 (s with superimposing d caused by $^2J_{H,Sn} = 14.4$, OCH₂Sn), 3.97 (d, $J_{3,2} = 3.5, 3-H_2$, 4.40 (m_c, 2'-H), 5.70 – 5.80 (m, 1-H, 2-H).

$$
C_{25}H_{49}NO_3Sn \text{ (530.4)} \quad \text{Calcd. C 56.62 H 9.31 N 2.64} \quad \text{Found C 56.66 H 9.47 N 2.84}
$$

Wittig-Still Rearrangements2" of *13c* (0.346 *g,* 0.62 mmol), *13d* (0.088 **g,** 0.17 mmol), *14a* (0.215 g, 0.35 mmol), *14b* (0.330 g, 0.50 mmol), 14c (0.283 g, 0.51 mmol), and 14d (0.106 g, 0.20 mmol) were performed according to the procedure given for thc rearrangement **of** *13b (13c* and *14c* were rearranged in the absence **of HMPA).** Isolated were **15c** [0.126 g, 75%, > 99.8% syn (GLC)], **15d** [0.036 g, 88%, >99.8% *syn* (GLC)], **15a** [0.102 g, 90%, *syn: anti* = 46:54 ('H NMR)], *15b* [0.152 g, 82%, *syn:anti* = 78:22 ('H NMR)], *1%* [0.108 g, 79%, *syn:anti* = 92:8 (GLC)], and **15d** C0.037 *g,* 77%, $syn: anti = 70:30$ (GLC)], respectively. A crystal obtained from the 78 : 22 mixture **of** *syn-* and *anti-15b* was cut into two pieces. One piece was X-rayed. The other piece $-$ by ${}^{1}H$ NMR spectroscopy - was shown to be identical with the *major* epimer of the original 78 : 22 mixture of diastereomers.

Wittig-Still Rearrangement of 13b: At -70° C, *n*-BuLi (1.5 mol/l in hexanc; 0.12 ml, 0.18 mmol, 1.8 equiv.) was added to *13b* (0.067 **g,** 0.10 mmol) in THF (2 ml) and HMPA (0.07 ml, 0.4 mmol, 4 equiv.). Since after 2 h 13b was still detected by TLC, additional n-BuLi (0.12 ml, 0.18 mmol, 1.8 equiv.) was added. After **1.5** h the reaction was quenched with satd. aqueous NH₄Cl (5 ml). Dilution with H₂O (2 ml), extraction with ether (4 \times 10 ml), and flash chromatography [petroleum ether/ether $(3:1 \rightarrow 1:1)$] led to 15b [0.017 g, 45%; >95% syn, ('H NMR)] along with *llb* (0.015 g, 40%).

(2R,3S*)- and (2S*,3S*)-3-(Dibenzylamino)-4-methyl-2-vinyl-1-pentanol (syn-15a, anti-15a):* The 46: 54 (i. e. nearly 1 : 1) ratio of these epimers in the obtained mixture precluded $-$ in general $$ an unambiguous assignment **of** the 'H NMR signals to major and minor isomers, respectively. ¹H NMR of *syn*-15a: δ = two superimposing AB signals $[\delta_A = 3.48, \delta_B = 3.87, J_{A,B} = 13.0,$ *anti*-15a: δ = two superimposing AB signals $[\delta_A = 3.65, \delta_B = 3.85,$ $1'$ -H). - Unassigned: $\delta = 0.98$, superimposing 0.98, 1.07 and 1.15 1.66 (dd, $J_a = 8.4$, $J_b = 4.0$, OH), 2.22 (m_c, 2-H), 2.48 (m_c, 2-H), 3-H), 2.85 (m_c, 2-H), 3.29 (ddd, $J_a = 10.4$, $J_b = 6.4$, $J_c = 4.0$, 1-H^t), 3.44-3.55 (m, 1-H₂, 1-H²), 4.15 (br. t, $J = 6.0$, OH), 5.09-5.17 (m, N(CH₂Ph)₂], 5.88 (ddd, $J_{trans} = 18.2, J_{cis} = J_{1'2} = 9.2, 1'$ -H). -- $J_{A,B} = 13.3$, N(CH₂Ph)₂, 5.52 (ddd, $J_{trans} = 17.2$, $J_{cis} = J_{1'2} = 9.7$, $[4 \text{ d}, J_{\text{vic}} = 7.0, J_{\text{vic}} = 7.0, J_{\text{vic}} = 6.9, J_{\text{vic}} = 6.8, 2 \times \text{CH}(CH_3)_2],$ 2.56 (dd, $J_a = 9.6$, $J_b = 5.0$, 3-H), 2.61 (dd, $J_a = 9.8$, $J_b = 2.2$, E-2'-H, Z-2'-H).

$C_{22}H_{29}NO$ (323.5) Calcd. C 81.69 H 9.04 N 4.33 Found C 81.73 H 9.14 N 4.19

(2R *, *l'S*) -2-[1- (Dibenzylamino) -2-phenylethyl]-3-buten-I-o1* $(syn-15b)$: ¹H NMR (300 MHz, C_6D_6 , C_6D_5H as internal standard): (dd, $J_{\text{gen}} = 13.6, J_{2 \cdot H^{i},1'} = 10.2, 2' - H^{1}$), 2.71 (m_c, OH), 2.92 (dd, δ = 2.09 (dddd, $J_{2,3}$ = 9.4, $J_{2,1-H^1} = J_{2,1-H^2} = J_{2,1'} \approx 4, 2-H$), 2.54 J_{gem} = 13.6, $J_{2' \cdot H^2,1'}$ = 3.8, 2'-H²), 3.23 [d, J_{gem} = 13.4, N(CH¹HPh)₂], 3.27 (ddd, $J_{1'2'-H^1} = 10.1$, $J_{1'2'-H^2} = J_{1'2} = 4.1$, $[d, J_{\text{gem}} = 13.6, \text{ N}(\text{CH}H^2\text{Ph})_2], 5.09 \text{ (dd, } J_{\text{cis}} = 10.3, J_{\text{gem}} = 2.2,$ E -4-H), 5.11 (dd, $J_{trans} = 17.3, J_{gem} = 2.2, Z$ -4-H), 6.13 (ddd, $J_{trans} =$ 1'-H), 3.34 (dd, $J_{\text{gem}} = 10.8$, $J_{1 \cdot \text{H}^1,2} = 4.7$, 1-H¹), 3.54 (m_c, 1-H²), 3.90 17.2, $J_{cis} = 10.3$, $J_{3,2} = 9.4$, 3-H), 7.00 - 7.44 (m, 3 C₆H₅).

(2S,I'S*)-2-[1-(Dibenzylamino)-2-phenylethyl]-3-buten-I-ol* $(anti-15b):$ ¹H NMR: (300 MHz, C_6D_6 , C_6D_5H as internal standard): $\delta = 2.73$ (dd, $J_{\text{gem}} \approx 14$, $J_{2^{\prime}\text{-H}^2,1^{\prime}} \approx 7$, low field 2'-H), 3.66 [d, $J_{\text{gem}} =$ 13.3, low field $N(CHHPh)_{2}$, 4.75 (dd, $J_{cis} = 10.1$, $J_{gem} = 2.1$, 17.2, $J_{cis} = J_{3,2} = 9.5$, 3-H); residual signals superimposed by those of *syn-15b.* E -4-H), 4.86(dd, $J_{trans} = 17.3$, $J_{gem} = 2.1$, Z-4-H), 5.13(ddd, $J_{trans} =$

C₂₆H₂₉NO (371.5) Calcd. C 84.06 H 7.87 N 3.77 Found C 83.72 H 7.81 N 3.89

(2R) -2-[(4R)-3- (tert-Butoxycarbonyl) -2,2-dime~hyl-l,3-oxazolidin-4-yl]-3-buten-1-ol (syn-15c): $[\alpha]_0^{19} = -7.5$ (c = 4.0, CH₂Cl₂). -
¹H NMR (C₆D₅NO₂): δ = 1.53 [s, C(CH₃)₃], superimposes 1.53 [s, $2'$ -(CH₃)_a], 1.66 [s, 2'-(CH₃)_b], 2.68 (m_c, 2-H), 3.73 and 3.99 (2 m_c, 1-H₂, 5'-H₂), 4.25 (m_c, 4'-H), 5.16 (d, $J_{cis} = 10.6$, E-4-H), 5.19 (d, ^{3-H).} $C_{14}H_{25}NO_4$ (271.4) Calcd. C 61.97 H 9.29 N 5.16 J_{trans} = 17.9, Z-4-H), 5.94 (ddd, J_{trans} = 18.0, J_{cis} = $J_{3,2}$ = 9.5, Found C 61.80 H 9.52 N 5.04

(2s) -2-[(4R)-3- (tert-Butoxycarbonylj -2,2-dimethyl-l,3-oxazoli $dim-4-yl$ -3-buten-1-ol (anti-15c): ¹H NMR (C₆D₅NO₂): $\delta = 1.51$ (m_c, 2-H), 3.82 (m_c), 4.14 (m_c), 4.74 (m_c or impurity), ca. 6.0 (m_c, 3-H); residual signals superimposed by syn-15c.

(2R,Z'S)-2-[I- (tert-Butoxycarbonyl)pyrrolidin-2-yl]-3-buten-lol (syn-15d): $[\alpha]_D^{20} = +60$ (c = 0.6, CH₂Cl₂). - ¹H NMR 2.52 (m_c, 2-H), 3.23 (ddd, $J_a = 11.0$, $J_b = 7.9$, $J_c = 5.1$, 1H), $3.53-3.60$ (m, 2H), 3.69 (dd, $J_a = 11.0$, $J_b = 8.2$, 1H), 4.27 (m_c, 2'- $(C_6D_5NO_2)$: $\delta = 1.53$ [s, $C(CH_3)_3$], $1.67-2.07$ (m, $3'$ -H₂, $4'$ -H₂, OH), **H**), 5.12(dd, $J_{cis} = 10.3$, $J_{gem} = 2.1$, E-4-H), 5.16(ddd, $J_{trans} = 17.3$, J_{gem} = 2.1, $J_{Z_4,H,2}$ = 0.8, Z-4-H), 5.73 (ddd, J_{trans} = 17.3, J_{cis} = $10.0, J_{3,2} = 9.3, 3$ -H).

(2S,2'S) -2-[N- (tert-Butoxycarbonyl)pyrrolidin-2-yl]-3-buten-I ol (anti-15d): ¹H NMR (C₆D₃NO₂): δ = 1.53 [s, C(CH₃)₃], 2.29 (m_c, 2-H), **3.81** (dd, *J,* = **11.5,** *Jb* = **4.0, 1** H), **4.10** (mc, 2'-H), **5.97** (ddd, $J_{trans} = 17.4, J_{cis} = 10.5, J_{3,2} = 9.5, 3-H$; residual signals superimposed by those of **syn-15d.**

> C13HZ3N03 **(241.3)** Calcd. C **64.70** H **9.61** N **5.80** Found C **64.67 H 9.84 N 5.71**

(2R,2'S)-3-[I- **(tert-** *Butoxycarbonyl)pyrrolidin-2-yl]-4-[* **(phenylcarbamoy1)oxyl-I-butene (syn-17)** (contaminated with ca. **9% of** *(ZSJ'S)* **-3-[** *1* - *(tert-hutoxycarbonyl)pyrrolidin-2-yl]-4-[* **(phenylcarbamoyl)oxy]-1-butene (anti-17)}: 15d** (ca. **0.07** g, **syn: anti** *z* **10: 1)** and phenyl isocyanate **(0.3** ml) were allowed to react for 3 h at 140°C and 3 d at room temp. The crude carbamates were isolated by flash chromatography. Several recrystallizations from petroleum ether/diethyl ether (3:1) by slow evaporation of the solvent delivered a crop of crystals. One **of** them was cut into halves. One half was used for X-ray analysis **(syn-17)** the other half was the *major* epimer of the original *syn*/anti-17 mixture as shown by HPLC comparison [Beckman **163** Variable Wavelength Detector, Nucleosil **120- 7** C **18** column, MeOH/H,O **(65** : **35),** flow rate: **1** ml/min]. - $120 - 7$ C 18 column, MeOH/H₂O (65:35), flow rate: 1 ml/min]. -
Too little material was available to determine the m.p. - ¹H NMR $(C_6D_5NO_2)$: syn-17: $\delta = 1.56$ [s, $C(CH_3)_3$], 1.57-1.97 (m, 3'-H₂, 4'-**H2), 3.02** (mc, 3-H), **3.29** (mc, **lH), 3.59** (mc, **lH), 4.11** (mc, **IH), 4.37**

Table **1.** Crystal data **of 15b** and **1732)**

	15b	17	
Emp. Formula	$\rm{C_{26}H_{29}ON}$	$C_{20}H_{28}O_4N_2$	
M-	371.52	360.45	
Size [mm]	$0.3 \times 0.2 \times 0.4$	$0.4 \times 0.1 \times 0.5$	
crystal system	monoclinic	orthorhombic	
space group	$P1$ (Nr. 2)	$P2_12_12_1$ (Nr. 19)	
a [Å]	9.425(2)	9.939(2)	
b [Å]	9.490(2)	8.520(2)	
c [Å]	12.386(1)	23.674(4)	
α [°]	94.74(1)		
β [$^{\circ}$]	97.68(1)		
γ [°] <i>V</i> [Å ³]	102.49(1)		
	1064.8(3)	2004.7(6)	
z	$\overline{2}$	4	
D_c [g/cm ³]	1.159	1.194	
μ (Cu- K_{α}) [cm ⁻¹]	5.0	6.4	
$F(000)$ [e]	400	776	
T	room temp.	room temp.	
Diffractometer	Enraf-Nonius CAD4		
Radiation	Cu- K_{α} (1.54184 Å),		
	graphite monochromator		
Scan		ω, Δω = [0.8 + 0.14tg(Θ)] ^o	
Measured reflections	3332	3777	
Unique reflections	2930	2826	
$R_{\rm int}$	0.032	0.034	
Observed reflections	2711	2629	
	$[F_{o} \geq 5\sigma(F_{o})]$	$[F_{o} \geq 5\sigma(F_{o})]$	
Solution	direct methods		
Refinement	full matrix least squares		
R/R_w (w = $1/\sigma^2$)	0.072/0.070	0.043/0.040	
Hydrogens	calculated; vinylic, O -, N -bonded		
	found		
Refined parameters	263	245	
Programs used		SHELXS-86 ³⁹⁾ , SHELX-76 ⁴⁰ ,	
		PLATON89 ⁴¹⁾ , SCHAKAL-88B ⁴²⁾	

Table **2.** Coordinates and equivalent isotropic temperature factors of 15b; $U_{eq} = 1/3 \sum_{ij} (U_{ij} \cdot a_i^* \cdot a_j^* \cdot a_i \cdot a_j)$

Atom	x/a	y/b	z/c	U_{eq}
٥	0.2971(3)	0.9534(3)	0.2203(2)	0.080(1)
N	0.0618(2)	0.7648(2)	0.2945(2)	0.0428(8)
C1	0.3827(4)	0.9138(4)	0.3118(3)	0.063(1)
C ₂	0.3036(3)	0.8935(3)	0.4100(3)	0.046(1)
C ₃	0.2668(4)	1.0273(3)	0.4609(3)	0.062(1)
C ₄	0.2883(6)	1.1551(5)	0.4252(5)	0.095(2)
C5	0.1753(3)	0.7563(3)	0.3870(2)	0.042(1)
C6	0.1136(3)	0.7107(3)	0.4917(3)	0.050(1)
C7	0.2254(3)	0.6683(3)	0.5739(3)	0.047(1)
C8	0.2872(3)	0.5532(4)	0.5476(3)	0.059(1)
C9	0.3878(4)	0.5135(4)	0.6238(4)	0.079(2)
C10	0.4289(5)	0,5889(5)	0.7264(4)	0.089(2)
c11	0.3702(5)	0.7035(5)	0.7531(3)	0.088(2)
C ₁₂	0.2682(4)	0.7430(4)	0.6779(3)	0.066(1)
C13	-0.0516(3)	0.8400(3)	0.3264(3)	0.051(1)
C14	$-0.1378(3)$	0.8865(3)	0.2301(3)	0.049(1)
C15	-0.2874(3)	0.8361(4)	0.2046(3)	0.057(1)
C16	$-0.3676(4)$	0.8795(4)	0.1166(3)	0.070(2)
C17	$-0.2979(5)$	0.9727(5)	0.0525(3)	0.078(2)
C18	$-0.1486(5)$	1,0239(5)	0.0770(3)	0.087(2)
C19	$-0.0694(4)$	0.9822(4)	0.1644(3)	0.075(2)
C20	$-0.0126(3)$	0.6187(3)	0.2366(3)	0.053(1)
C21	0.0870(3)	0.5507(3)	0.1745(3)	0.049(1)
C ₂₂	0.1497(4)	0.6173(4)	0.0925(3)	0.065(1)
C ₂₃	0.2356(5)	0.5507(5)	0.0315(3)	0.083(2)
C ₂₄	0.2584(4)	0.4179(5)	0.0524(4)	0.084(2)
C ₂₅	0.1967(5)	0.3507(4)	0.1321(4)	0.083(2)
C ₂₆	0.1112(4)	0.4157(4)	0.1936(3)	0.065(1)

Table **3.** Coordinates and equivalent isotropic temperature factors of **17;** $U_{eq} = 1/3 \sum_{ij} (U_{ij} \cdot a_i^* \cdot \hat{a}_i^* \cdot a_i \cdot a_j)$

 $(m_c, 4-H_2), 5.14$ (br. d, $J_{cis} \approx 10$, E-1-H), 5.20 (br. d, $J_{trans} = 16.8$, $7.05-7.65$ (m, C_6H_5). - anti-17: $\delta = 3.17$ (m_c, 3-H), 5.80 (ddd, J_{trans} = 17.4, J_{cis} = 11.0, $J_{3,2}$ = 8.4, 3-H); residual signals superimposed by those of **syn-17.** $Z-1-H$), 5.89 (ddd, $J_{trans} = 17.2$, $J_{cis} = 10.2$, $J_{2,3} = 8.3$, 2-H),

> C20H28NZ03 **(360.5)** Calcd. C **66.64** H **7.83** N **7.77** Found C **66.63 H 7.90** N **7.59**

CAS Registry Numbers

9a: 123751-06-4 / **(E)-9b: 123751-07-5** / **(Z)-9b: 123751-08-6** / *(E)-* **(&)-6: 123808-73-1** / **(+k7: 123808-74-2** / *(R)-S:* **102308-32-7** / *(E)-* 9c: 123751-09-7 */* **(Z)-9c**: 123751-10-0 */* **(E)-9d**: 123751-11-1 */* **(Z)-9d:** 123751-12-2 / (S) -10: 69610-40-8 / (\pm)-11b: 123751-13-3 / 11c:

- 123751-14-4 *I lld:* 123751-15-5 *I (+)-12a:* 123751-16-6 / *(+)-12b:* 123751-17-7 '/ *12c:* 123751-18-8 *'r12d:* 104700-47-2 *(?)-13b:* 123751-19-9 / *13c:* 123774-93-6 / *13d:* 123751-20-2 / *(+)-14a:* 123751-21-3 / (±)-**14b**: 123751-22-4 / **14c:** 123751-23-5 / **14d:**
123751-24-6 / (±)-(syn)-**15a**: 123751-25-7 / (±)-(anti)-**15a**: 123751-
26-8 / (±)-(syn)-**15b**: 123751-27-9 / (±)-(anti)-**15b**: 123751-28-0 / *(syn)*-15c: 123751-29-1 / *(anti)*-15c: 123751-30-4 / *(syn)*-15d: 123751-31-5 / *(anti)-15d:* 123751-32-6 / *(syn)-17:* 123751-33-7 / *(anti)-17:* 123751-34-8 / Bu3SnCH21: 66222-29-5 / PhNCO: 103- 71-9 / (EtO)₂P(O)CH₂CO₂Me: 1067-74-9 / Ph₃P=CHCO₂Me: 2605-67-6 / **(S)-N-(tert-butoxycarbony1)proline:** 15761-39-4
- R. W. Hoffmann, *Chem. Rev.,* in thc press.
- " H. Matsunaga, T. Sakamaki, H. Nagaoka, *Y.* Yamada, *Tetra-hedron Lett. 24* (1983) 3009.
- **3,** Y. Yamamoto, **S.** Nishii, T. Ibuka, *J. Chem. Soc., Chem. Commun. 1987,* 464.
- **4J** A. Krief, **W.** Dumont, P. Pasau, *Tetrahedron Lett. 29* (1988) 1079.
- *5,* A. Krief, W. Dumont, *Tetrahedron Lett. 29* (1988) 1083.
- J. Mulzcr, M. Kappert, G. Huttner, **I.** Jibril, *Tetrahedron Lett. 26* (1985) 1631.
- ') J. Muber, M. Kappert, G. Huttner, I. Jibril, *Angew. Chem. 96* (1984) 726; *Angew. Chem. Int. Ed. Engl. 23* (1984) 704. ') F. E. Ziegler, P. **J.** Gilligan, *J. Org. Chem. 46* (1981) 3874.
-
- 9, W. R. Roush, M. R. Michaelides, D. F. Tai, B. M. Lesur, **W.** K. M. Chong, **I). J.** Harris, *J. Am. Chem. SOC. 111* (1989) 2984.
- lo) R. J. Linderman, J. R. McKenzie, *Tetrahedron Lett. 29* (1988) 3911.
- 11) J. Mulzer, M. Kappert, Angew. Chem. 95 (1983) 60; Angew. Chem. *Znt. Ed. kngl.* 22'(i983) 63:
- ¹²⁾ D. Horton, T. Machinami, J. Chem. Soc., Chem. Commun. 1981, 88.
- **13)** R. W. Franck, T. V. John, K. Olejniczak, J. F. Blount, *J. Am. Chem. SOC. 104* (1982) 1106.
- **14)** The facial selectivity of the conjugate addition of RLi or RMgBr to O-protected α -hydroxy alkylidene isopropylidenemalonates depends inter alia on the protecting group cmployed; top face attack prevails for MEM ethers and bottom face attack for Ph_{2t}BuSi ethers: M. Larcheveque, G. Tamagnan, Y. Petit, *J. Chem. Soc., Chem. Commun.* **1989**, 31. - The chirally modified ketones **4-[(tert-butyldimethylsilyl)oxy]-2-cyclohexenone** and 4- **[(tert-butyldimethylsilyl)oxy]-2-cyclopentenone** react with silyl \vec{k} etene acetals/HgI₂ or with allyltrimethylsilane/TiCl₄ *syn* to the t BuMe₂SiO substituent and with Me₂CuLi *anti* to t BuMe₂SiO: *S.* **3.** Danishefsky, B. Simoneau, *J. Am. Chem. Soc. 111* (1989) 2599; **S.** J. Danishefsky, M. P. Cabal, K. Chow, *ibid. 111* (1989) 3456.
- 15 In fact, $S_N 2'$ reactions of 4-alkoxy-1-chloro-2-alkenes with mixed copper/zinc reagents $R_2CuZnCl$ occur with exclusive bottom face attack, as reported recently: E. Nakamura, K. Sekiya, M. Arai, **S.** Aoki, *J. Am. Chem. Soc. 111* (1989) 3091.
- ") Iba)R. Bruckner, H. Priepke, *Angew. Chem. 100* (1988) 285; *Angew. Chem. Int. Ed. Engl. 27* (1988) 278. **16b)** E. Nakai, T. Nakai, *Chem. Int. Ed. Engl. 27* (1988) 278. - ^{16b} E. Nakai, T. Nakai, *Tetrahedron Lett.* 29 (1988) 4587. - ^{16b} R. Brückner, *Tetrahedron Lett.* 29 (1988) 5747. - ^{16d} R. Brückner, *Chem. Ber.* 122 (1989) Lett. **29** (1988) 5747. - ¹⁶⁴⁾ R. Brückner, *Chem. Ber.* 1**22** (1989) 703. - ¹⁶⁶ H. Brückner, *Chem. Ber.* 1**22** (1989) 703. - ¹⁶⁰ H. Priepke, R. Bruckner, *Chem. Ber. 123* (1990) 153.
- "I T. Schmidlin, R. Gamboni, P. Strazewski, *C.* Tamm, *Helv. Chim. Acta 66* (1983) 1796.
- ¹⁸⁾ M T. Reetz, *Pure Appl. Chem.* **60** (1988) 1607.
- 19) The combined stereodirecting effects of allylic N *plus* allylic 0 containing groups in enones/enoates have been investigated with respect to 1,4-additions of cuprates [S. Cardani, G. Poli, C. Scolastico, R. Villa, *Tetrahedron* **44** (1988) 5929], cyclopropanations with Ph₃P=CMe₂ [A. Bernardi, C. Scolastico, R. Villa, *Tetrahedron Lett. 30* (1989) 37331, and nucleophilic epoxidations with KOCl **[S.** Cardani, **A.** Bernardi, L. Colombo, **C.** Gennari, **C.** Scolastico, I. Venturini, *Tetrahedron* 44 (1988) 5563] in N,O ac-

etals derived from ephedrine. Wittig-Still rearrangements under the influence of an ephedrine-derived allylic N,O acetal also occur stereoselectively [R. Hoffmann, R. Briickner, unpublished results].

- 20) W. **C.** Still, A. Mitra, *J. Am. Chem. SOC. 100* (1978) 1927.
- 2^{21} The generation of lithiated allylic ethers through reductive cleavage of [(allyloxy)methyl] sulfides or [(allyloxy)methyl] sulfones was recently reported: C. A. Broka, T. Shen, *J. Am. Chem. Soc. 111* (1989) 2981; B. Kruse, R. Bruckner, *Chem. Ber. 122* (1989) 2023.
- ²²⁾ The *N*-Boc-protected esters *E*-9c, *Z*-9c, *E*-9d, and *Z*-9d were reduced in the presence of 1.5 equiv. of F_3B-OEt_2 ; cf. T. Moriwake, **S.** Hamano, D. Miki, **S.** Saito, **S.** Torii, *Chem. Lett. 1986,* 815.
- *23'* W. C. Still, M. Kahn, A. Mitra, *J. Org. Chem. 43* (1978) 2923.
- **24)** J. M. Tronchct, B. Gentile, *Helu. Chim. Acta 62* (1979) 2091; **S.** Valverde, M. Martin-Lomas, B. Herradon, S. Garcia-Ochoa, Valverde, M. Martin-Lomas, B. Herradon, S. García-Ochoa, *Tetrahedron* 43 (1987) 1895. – A comprehensive list of examples may be found in: B. E. Maryanoff, A. B. Reitz, *Chem. Rev.* 89 (1989) 863.
- ²⁵⁾ Similarly, Wittig-Horner reactions of the aldehydes derived from amino alcohols *7* or **10** furnished esters *E-9b* (83%) and *E-9d* (76%), respectively, with > 95 : < 5 steric purity. *26)* P. Garner, **J.** M. Park, *J. Org. Chem. 52* (1987) 2361.
-
- **27)** M. T. Reetz, M. **W.** Drewes, A. Schmitz, *Angew. Chem. 99* (1987) 1186; *Angew. Chem. Int. Ed. Engl. 26* (1987) 1141.
- **28)** Method: R. E. Ireland, D. W. Norbeck, *J. Org. Chem. 50* (1985) 2198.
- Compound 10 was obtained in 73% yield from N-Boc-(S)-proline by reduction with H_3B-SMe_2 . - Method: C. F. Stanfield, J. E. Parker, P. Kanellis, *J. Org. Chem. 46* (1986) 4797.
- 30)The *syn:anti* ratio in *15d* was 70:30 with HMPA and 68:32 without. Similarly, a 78 : 22 mixture of *syn-* and *anti-15b* resulted from the Wittig-Still rearrangement of *14b* whether HMPA was present or not (yield: 80%). For a discussion of the mechanistic implications of the invariance of *syn: anti* ratios vs. the presence or absence of HMPA in the related Wittig-Still rearragements of lithio ethers 2 cf. ref.¹⁶¹.
- **31)** The fragmentation of lithiated ethers through formal elimination of CH2 is known: **31a)** C. **A.** Broka W. **J.** Lec, T. Shen, *J. Org. Chem. 53* (1988) 1336. - **31b)** Ref.'").
- ³²⁾ Further details of the crystal structure investigations are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft fur wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, on quoting the depository numbers CSD-320019 and CSD-320020, the names of the authors, and the journal citation.
- **33) S.** N. Vinogradov, R. H. Linell, *Hydrogen Bonding,* p. 153, Van Nostrand Reinhold Company, New York 1971.
- **34)** K. Nakamoto, M. Margoshes, R. E. Rundle, *J. Am. Chem. SOC. 77* (1955) 6480.
- **35)** V. Jager, V. BuB, *Liebigs Ann. Chem. 1980,* 122. For a similar configurational dependence of *J_{vic}* values in γ-alkoxy alcohols cf.
ref.¹⁶⁰. *36)* The same order of stereoselectivities was established for Wittig-
- Still rearrangements of *Z-* vs. E-lithiated ethers of type *2,* i.e. ethers equipped with an *oxygenated* allylic stereocenter **16f).**
- **37)** J. Hine, *Structural Effects on Equilibria in Organic Chemistry,* p. 114, John Wiley & Sons, New York, London, Sydney, Toronto, 1975.
- **38)** D. Rohrig, *Diplomarbeit,* Universitat Marburg, 1988.
- ³⁹⁾ G. M. Sheldrick, SHELXS-86, *Program for Crystal Structure Solution,* Univ. of Gottingen, 1986.
- **40)** G. M. Sheldrick, SHELX-76, *Program for Crystal Structure Determination,* Univ. of Cambridge, 1976.
- **41)** A. L. Spek, PLATON89, *Program jbr Geometrical Analysis* of *Crystal Structures,* Univ. of Utrecht, 1989.
- **42)** E. Keller, SCHAKAL-88 B, *A FORTRAN Program ,for the Graphic Representation of Molecular and Crystallographic Models,* Univ. of Freiburg, 1988.

[262/89]